
Filling the Pipe: A Guide to Optimising Memcache Performance on
SolarFlare® Hardware

Solarflare Communications Inc.

Technical Report Number: SF-110694-TC

1st July 2013

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

Contents

1 Introduction 2

2 A Primer on Modern x86 Architecture 2

2.1 Packages, Cores, Dies and Hyperthreads . 2

2.2 Non-Uniform Memory Access . 2

2.3 Network Interrupt Management . 2

3 Optimising Memcache Performance: A Quickstart Guide 3

3.1 Optimization Principles . 3

3.2 Optimising Memcache Server Performance . 3

3.3 Optimising Memcache Client Performance . 7

3.4 Benchmark Client-Server Performance . 7

4 Maximising Memcache Performance 8

4.1 Use The Optimum Server Version . 8

4.2 Optimize Server-to-NUMA Node Mapping . 9

4.3 Consider Multiserver Configurations . 9

4.4 Optimize The Interrupt Service Configuration . 9

4.4.1 Determine The Optimum Number of Interrupt Service CPUs 9

4.4.2 Localize Interrupt Service CPUs . 10

4.4.3 Shield Interrupt Service CPUs . 10

4.5 Localize Memory Allocation . 11

4.6 Client Side Optimizations . 11

4.6.1 Multiget . 12

4.6.2 UDP Get . 12

4.6.3 OpenOnload - Stack Per Thread . 12

4.7 Consider Hyperthreading . 12

4.8 Further Exploration . 13

5 Conclusion 13

A Hardware Specification & Software Versions 14

A.1 Hardware Specification . 14

A.2 Software Versions . 14

Issue 1 © Solarflare Communications 2013 1

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

1 Introduction

This document outlines the general principles and specific steps that need to be carried out in order to optimise Memcache

performance on Solarflare hardware in Linux environments. While this document focuses on Memcache the principles and

mechanisms outlined should be useful for any application dominated by request-response style traffic.

2 A Primer on Modern x86 Architecture

To effectively tune Memcache performance it is useful to have a synoptic understanding of the physical and logical structure

of modern x86 architecture in regards to network communication. This section outlines the basic hardware properties affecting

Memcache performance. Readers familiar with the structure of modern servers can skip to Section 3.

2.1 Packages, Cores, Dies and Hyperthreads

Modern CPUs are shipped in physical units called packages – the piece of metal with pins that plugs into a socket on the

motherboard. Packages are composed of multiple cores each of which is an independent execution unit that runs programs. A

package is usually composed of one or more dies. Dies are the physical silicon on which the transistors composing cores reside.

The advantage of clustering cores on a die is that they can share common resources, e.g. the memory controller or Last Level

Cache. Modern packages are usually comprised of a single die.

Hyperthreading leverages the superscalar nature of modern processors capable of executing multiple instructions operating

on separate data in parallel by making a core appear as multiple (usually 2) logical processors. As hyperthreading is transparent

from the software perspective it is an efficient mechanism for increasing parallelism. Its effectiveness is, however, dependent

on the complementariness of programs being run on related logical processors.

2.2 Non-Uniform Memory Access

As illustrated in Figure 1, every package contains a local memory controller accessible to all cores. The combination of a

package and its attached memory is commonly referred to as a Non-Uniform Memory Access (NUMA) node. Packages are

interconnected via a specialised (QuickPath or HyperTransport) CPU interconnect.

While memory is globally addressable (i.e. every processor can access all memory in the system) it is slower to access

non-local (remote) memory as this requires traversal over the CPU interconnect. It thus stands to reason that memory should

be physically equally distributed across all packages in the system to ensure optimum application performance.

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Cache

CPU

Cache

PCIe

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Cache

CPU

Cache

PCIe

QPI

NIC

MemoryMemory

I/O Hub

Figure 1: Block diagram of typical modern NUMA system

This diagram, also represents the structure of the example system used in this report (Appendix A)

2.3 Network Interrupt Management

NICs employ interrupts in two dimensions: Upon receiving data from the network the NIC informs the host via a receive

interrupt causing it to carry out basic data demultiplexing functionality. Similarly, the NIC sends the host a transmit interrupt

when data queued for transmission has been dispatched.

Issue 1 © Solarflare Communications 2013 2

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

Servicing interrupts can be CPU intensive, especially for traffic comprised of small, frequent exchanges. Slow CPUs

servicing interrupts suffer from livelock in which they are unable to make progress on application work due to heavy interrupt

load. Even with adequate CPU, servicing interrupts can lead to decreased application performance due to (data) cache pollution.

To mitigate the CPU availability problem modern NICs can spread interrupts over multiple CPUs. Solving the cache pol-

lution problem, however, is less straightforward and is commonly addressed by dedicating a number of CPUs to just servicing

interrupts.

3 Optimising Memcache Performance: A Quickstart Guide

This section provides a step-by-step guide for configuring your server for optimum Memcache performance with Solarflare

equipment. Readers interested in additional tuning options are advised to consult Section 4.

3.1 Optimization Principles

Memcache is a multithreaded application capable of scaling up performance by increasing the number of worker threads. Based

on the properties highlighted in Section 2 it follows that optimum performance is dependent on ensuring (i) an adequate number

of application threads are servicing client requests, (ii) application threads don’t access memory across NUMA nodes, (iii) there

are an adequate number of CPUs to service network interrupts and (iv) CPU (data) cache pollution is minimised.

Building on these principles, we advocate a configuration in which a separate instance of Memcache is run on every NUMA

node on the server and clients are configured to use them all (easily achieved given the first step in storing or accessing data is

hashing the key across available servers).

3.2 Optimising Memcache Server Performance

This section outlines the commands needed to optimise Memcache 1.4.15 server performance on our example system – a

dual socket 12 core E5-2620 machine (Figure 1) with 32GB RAM running Redhat Enterprise Linux 6.2. Please adapt them

depending on your setup. Readers interested in a detailed description of the example hardware specification and software

versions used in this section are advised to consult Appendix A.

The steps required to maximise server performance are as follows:

1. Disable all non-essential services.

Specifically, be sure to disable irqbalance.

[root@mc-svr ˜]# for s in acpid cgconfig irqbalance atd auditd \

avahi-daemon cpuspeed crond haldaemon \

iscsid kdump ksm ksmtuned libvirt-guests \

libvirtd lvm2-monitor mdmonitor microcode_ctl \

openct pcscd portreserve sysstat

do

/etc/init.d/$s stop

/sbin/chkconfig --del $s

done

2. Disable Hyperthreading

[root@mc-svr ˜]# for c in \

$(cat /sys/devices/system/cpu/cpu*/\

topology/thread_siblings_list \

| cut -f2 -d ’,’ | sort -n | uniq)

do

echo 0 > /sys/devices/system/cpu/cpu$c/online

done

3. Disable Swapping and Turn On Hugepage Support

Issue 1 © Solarflare Communications 2013 3

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

#turn off swapping

[root@mc-svr ˜]# swapoff -a

#non-essential. OK if it fails.

[root@mc-svr ˜]# echo 128 > /proc/sys/vm/nr_hugepages

4. Determine The Number of NUMA nodes and the CPU-to-Numa Node Mapping

[root@mc-svr ˜]# numactl --hardware | grep node | grep cpus

node 0 cpus: 0 1 2 3 4 5

node 1 cpus: 6 7 8 9 10 11

Based on these results we would run two instances of Memcache on this machine, with the threads for instance one

spread over Numa Node 0 (CPUs 0–5) and the second Numa Node 1 (CPUs 6–11).

5. Create A System Tasks Shield

Shields are used to restrict processes to preselected CPU and Memory nodes. They are useful for isolating CPUs to

prevent arbitrary processes running on them resulting in a reduction in the amount of available CPU time and increased

(data) cache pollution. Shields are implemented via the cpusets(7) mechanism and may be defined, deleted and

modified with the cset command.

We recommend constraining all boot and non-essential programs to a shield on CPU 0 thereby preventing arbitrary

process execution on other CPUs. This can be achieved as follows:

(a) Create A Shield Limited to CPU 0 for System Tasks

[root@mc-svr ˜]# cset set --cpu=0 system-tasks

cset: --> created cpuset "system-tasks"

(b) Move All Existing Programs Into The System Task Shield

[root@mc-svr ˜]# cset proc --move / system-tasks --kthread

cset: moving all tasks from root to /system-tasks

cset: moving 54 userspace tasks to /system-tasks

cset: moving 0 kernel threads to: /system-tasks

[==]%

cset: done

At this point all existing programs and Kernel threads will always run on CPU 0, effectively shielding CPUs 1–11.

6. Configure Interrupt Servicing CPUs

As explained in Section 2.3, servicing interrupts reduces application CPU time and results in cache pollution. For this

reason, Solarflare recommends interrupt servicing should be carried out by a small number of CPUs dedicated to the task.

The number of CPUs required for interrupt servicing is dependent on the network stack. OpenOnload does not heavily

rely on interrupts. Users deploying it are not required to carry out any further configuration in this step and may proceed

directly to the next step.

Users deploying the Kernel networking stack are recommended to dedicate at least 4a CPUs per 10G port, evenly dis-

tributed across CPUs in all nodes.

Dedicating CPUs to interrupt servicing consists of the following steps:

(a) Configure the Solarflare driver to spread interrupts over 4 CPUs

[root@mc-svr ˜]# echo "options sfc rss_cpus=4" >> /etc/modprobe.d/sfc.conf

(b) Reload the Solarflare driver to initiate the effect

[root@mc-svr ˜]# modprobe -r sfc && modprobe sfc

aThe exact number for a particular configuration is empirically determinable as explained in Section 4.4.1

Issue 1 © Solarflare Communications 2013 4

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

(c) Reconfigure networking for the Solarflare interface

[root@mc-svr ˜]# ifconfig eth2 <ip-address>

Alternatively, you can restart the networking service (/etc/init.d/network restart).

(d) Determine the interrupt lines claimed by the Solarflare NIC

[root@mc-svr ˜]# cat /proc/interrupts | grep eth2 | cut -f1 -d’:’

128

129

130

131

As expected, 4 interrupt lines are claimed to enable the NIC to spread interrupts over 4 cores.

(e) Assign the NIC-claimed interrupt lines to the appropriate CPUs.

The 4 interrupt lines are evenly distributed across CPUs in NUMA nodes 0 (CPUs 0,1) and 1 (CPUs 6,7) respec-

tively.

[root@mc-svr ˜]# echo 0 > /proc/irq/128/smp_affinity_list

[root@mc-svr ˜]# echo 1 > /proc/irq/129/smp_affinity_list

[root@mc-svr ˜]# echo 6 > /proc/irq/130/smp_affinity_list

[root@mc-svr ˜]# echo 7 > /proc/irq/131/smp_affinity_list

Note that CPU 0 is being reused to service interrupts and run all existing programs and kernel threads. This is

acceptable as we do not expect the CPU load of existing processes to be high. Doing so allows us to utilise the CPU

more efficiently.

(f) Create An Interrupt Service Shield

Creating an optional “interrupts” shield is useful for creating a simple administrative record of interrupt servicing

CPUs.

[root@mc-svr ˜]# cset set --cpu=0,1,6,7 interrupts

cset: --> created cpuset "interrupts"

7. Optimize Interrupt Delivery

Turning off adaptive receive interrupt delivery reduces latency and improves performance:

[root@mc-svr ˜]# ethtool -C eth2 adaptive-rx off

For users deploying the Kernel stack, turning off receive interrupt coalescing further improves performance:

[root@mc-svr ˜]# ethtool -C eth2 rx-usecs 0

8. Create Memcache Application Shields

Shields are also useful for segregating Memcache instances within and across NUMA nodes. Solarflare recommends

creating a shield for every separate instance of Memcache. The CPU and Memory nodes included in every shield depend

on how the resources of the system are allocated to instances. In our example server we aim for two Memcache instances,

one on each NUMA node. This is achieved as follows:

[root@mc-svr ˜]# cset set --cpu=2-5 --mem=0 mc-node0

cset: --> created cpuset "mc-node0"

[root@mc-svr ˜]# cset set --cpu=8-11 --mem=1 mc-node1

cset: --> created cpuset "mc-node1"

The following points are of note:

(a) By restricting Shield mc-node0 to CPUs 2–5 and Memory Node 0 (all in NUMA Node 0) we guarantee processes

running in the shield will always only access hardware resources on NUMA Node 0. Similarly, by restricting

mc-node1 to CPUs 8–11 and Memory Node 1 we guarantee processes running in the mc-node1 shield will

always only access resources on NUMA Node 1.

Issue 1 © Solarflare Communications 2013 5

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

(b) We restrict mc-node0 to CPUs 2–5 because CPUs 0,1 are allocated to system tasks and interrupts. Similarly,

mc-node1 is restricted to CPUs 8–11 because CPUs 6,7 are allocated to interrupts. As OpenOnload is not reliant

on interrupts (Step 6), users deploying it may reassign the interrupt CPUs to the respective Memcache shields.

(c) It is possible to create multiple Memcache shields on the same NUMANode and it may be useful to do so if multiple

servers are required for performance reasons.

9. Export OpenOnload Environment Variables

Users deploying OpenOnload should set the following environment variables:

export EF_POLL_USEC=1000

export EF_FDS_MT_SAFE=0

export EF_EPOLL_SPIN=1

export EF_POLL_SPIN=1

export EF_SELECT_SPIN=1

export EF_STACK_PER_THREAD=1

Users who want to debug/verify connections are accelerated should set the EF NO FAIL environment variable (this

option disallows conventional unaccelerated sockets).

export EF_NO_FAIL=0

10. Start Memcache Server Instances In Shields

The final step involves starting Memcache server instances in the Memcache Shields created in Step 8 via cset:

Start instances in mc-node0 and mc-node1 respectively:

[root@mc-svr ˜]# cset proc --set=mc-node0 --exec -- \

/home/rs/mp/tmp/memcached-1.4.15/memcached -m 4096 -t 4 -p 11212 -u rs &

[root@mc-svr ˜]# cset proc --set=mc-node1 --exec -- \

/home/rs/mp/tmp/memcached-1.4.15/memcached -m 4096 -t 4 -p 11213 -u rs &

The following points are of note:

(a) As recommended for our example server configuration, we create one Memcache instance per Memcache Appli-

cation Shields (Step 8). The cset tool is used to start the instances in the correct shields. The command cset

proc --set=<set-name> --exec -- <cmd> executes the command <cmd> in the set <set-name>.

(b) The following command-line options passed to Memcache are noteworthy:

i. -m <size>: Sets memory cache size. In our example configuration every instance has a 4GBMemory cache.

ii. -t <nr-of-threads>: Indicates the number of Memcache worker threads to start. While the optimum

number of worker threads is empirically determinable (see Section 4.1) and is dependent on hardware, on our

example server we use 3 when running on the OpenOnload network stack (for a total of 6 threads across both

servers) and 4 when running on the Kernel stack (for a total of 8 threads across both servers).

iii. -p <port-num>: Indicates the TCP listening port number of the server. Note that every server instance

requires a separate listening port number.

iv. -u <username>: Indicates which identity should be assumed when the server is started. This option is only

necessary if you start the Memcache server instances as root and must identify an existing user on the system.

v. -k: Indicates all Memcache memory should be locked down to prevent it being swapped. This option is only

necessary if you have not turned off swapping as recommended in Step 3.

(c) If running on OpenOnload, remember to prepend the memcached command with the onload script (i.e. cset

proc ... --exec -- onload /home/rs/mp/tmp/memcached-1.4.15/memcached ...).

Issue 1 © Solarflare Communications 2013 6

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

11. Pin Worker Threads

While it is not strictly necessary, it may be additionally beneficial to pin every Memcache worker thread onto a single

CPU to further improve performance by minimising cache pollution.

To correctly carry out worker thread pinning it is necessary to understand how threads are spawned in Memcache. A

Memcache instance started with n threads will spawn n + 1 threads of which the first n are worker threads and the last

is a maintenance thread used for hash table expansion under high load factor.

To pin worker threads it is necessary to determine their thread ID’s (TIDs). To list only all worker thread IDs for a

particular instance of Memcache use the command pipe:

ps -p <memcache-process-id> -o tid= -L | sort -n | tail -n +2 | head -n -1

Where <memcache-process-id> is the Process Identifier (PID) of the Memcache instance.

For example, substituting the PID of the Memcache instance started in mc-node0 earlier in the step, worker thread TIDs

are obtained as follows:

[root@mc-svr ˜]# ps -p 23443 -o tid= -L | sort -n | tail -n +2 | head -n -1

23444

23445

23446

23447

TIDs are pinned to single CPUs via the taskset -pc <cpu-id> <tid> command where <cpu-id> identifies

the target CPU and <tid> identifies the TID. For example, to pin the worker threads of the Memcache instance running

in the mc-node0 shield to CPUs 2–5 respectively, run the following series of commands:

[root@mc-svr ˜]# taskset -pc 2 23444

pid 23444’s current affinity list: 2-5

pid 23444’s new affinity list: 2

[root@mc-svr ˜]# taskset -pc 3 23445

pid 23445’s current affinity list: 2-5

pid 23445’s new affinity list: 3

[root@mc-svr ˜]# taskset -pc 4 23446

pid 23446’s current affinity list: 2-5

pid 23446’s new affinity list: 4

[root@mc-svr ˜]# taskset -pc 5 23447

pid 23447’s current affinity list: 2-5

pid 23447’s new affinity list: 5

By carrying out a similar set of steps on the Memcache instance running in the mc-node1 shield, we can obtain and pin

its worker threads to CPUs 8–11 respectively.

3.3 Optimising Memcache Client Performance

While the exact configuration of the client is dependent on the client application, we advocate adhering to the optimisation

principles outlined in Section 3.1. Broadly replicating the steps provided in Section 3.2 with the slight modification of running

multiple client applications in segregated NUMA-local shields should be sufficient to guarantee optimum performance. Finally,

if running on OpenOnload, remember to prepend client binaries with the onload script.

3.4 Benchmark Client-Server Performance

We recommend benchmarking server performance via the memslap benchmark described in Appendix A.

In particular, we benchmark performance via the following command:

[root@mc-cnt ˜]# /home/rs/mp/build/bin/memslap -s mc-svr:11212,mc-svr:11213 \

-T 8 -c 256 -B -t 30s -S 1s

Issue 1 © Solarflare Communications 2013 7

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

Kernel
OpenOnload

Figure 2: Performance of 2 Server Instances

(1 Per NUMA Node)

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15 + 1.6(92b232d)

1.4.15 - Kernel
1.4.15 - OpenOnload

1.6 - Kernel
1.6 - OpenOnload

Figure 3: Performance of Memcache 1.4.15 vs 1.6

(1.6 Git Commit ID:92b232d)

The following command-line options are noteworthy:

1. -s: Lists the servers to use. Based on our example configuration we are connecting to two separate Memcache instances

running on ports 11212 and 11213 of our example server (mc-svr).

2. -T 8: Instructs the benchmark to spawn 8 client threads.

3. -c 256: Instructs the benchmark to keep 256 concurrent connections open per-thread.

4. -B: Instructs the benchmark to use the binary Memcache protocol

5. -t 30s: Instructs the benchmark to run for 30 seconds.

6. -S 1s: Instructs the benchmark to output statistics every 1 second.

Figure 2 illustrates Memcache performance for our example server with varying numbers of server threads based on the

server configuration explained in Section 3.2 (2 Memcache instances, one per-NUMA node). As illustrated, OpenOnload has

much higher performance than the Kernel stack, peaking at 6 worker threads (3 per server-instance) before performance begins

to drop. Conversely, Kernel performance increases linearly for up to 8 worker threads. However, it is always slower than

OpenOnload.

4 Maximising Memcache Performance

This section quantifies the major hardware and software issues that may influence Memcache performance in production sys-

tems. It is useful for readers looking to micro-optimise server performance and debug performance problems.

4.1 Use The Optimum Server Version

Our experience with the Memcache codebase indicates that performance can significantly improve or reduce between succes-

sive versions iterations. Given that the two supported branches (1.4 and 1.6), are continually being modified and that there

are a number of variants of the core codebase, we recommend empirically comparing all potential options when making a

deployment decision.

Even in the standard 1.4 and 1.6 branches performance can vary significantly depending on configuration. Figure 3 compares

single server performance of Memcache 1.4.15 against Memcache 1.6 (HEAD: 92b232d) as of 01.05.2013 running on a single

NUMA node. As the results show, 1.4.15 performs significantly better (peaking at 600 MB/sec) than Memcache 1.6 (peaking

at 480 MB/sec). Furthermore, the 1.4.15 results show, running on OpenOnload, it is not beneficial to allocate more than 3

worker threads to an instance as the performance is constant. However, 1.6 has slightly better single threaded performance with

OpenOnload.

Issue 1 © Solarflare Communications 2013 8

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

1 Server Spanning 2 NUMA Nodes - Kernel
1 Server Spanning 2 NUMA Nodes - OpenOnload

1 Server Per NUMA Node - Kernel
1 Server Per NUMA Node - OpenOnload

Figure 4: Performance of 1 Server Spanning 2 NUMA Nodes

vs 1 Server Per NUMA Node

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

8 Multiserver Cfg (1 Worker/Server) - Kernel
8 Multiserver Cfg (1 Worker/Server) - OpenOnload

2 Multiserver Cfg (4 Workers/Server) - Kernel
2 Multiserver Cfg (4 Workers/Server) - OpenOnload

Figure 5: Performance of 8 Multiserver vs 2 Multiserver

Configuration (8 Worker Threads Total)

4.2 Optimize Server-to-NUMA Node Mapping

As outlined in Section 3.2, Solarflare recommends running a separate Memcache instance on every NUMA node. The per-

formance benefits of this configuration are highlighted in Figure 4. Both the Kernel and OpenOnload show an increase in

performance with an increasing number of worker threads when separate instances are executed on every NUMA node.

In contrast, a single server spanning two NUMA nodes performs poorly even with a small number of worker threads;

comparing Figure 3 and Figure 4 we notice that, in the OpenOnload case, when the server spans two NUMA nodes performance

flatlines at 400MB/sec with 3 worker threads as opposed to 600MB/sec in the single node case.

4.3 Consider Multiserver Configurations

At the cost of increased (client and server) setup and configuration complexity, it is possible to increase performance even

further than for the configuration outlined in Section 3.2. By running multiple servers, (Multiservers), each with a single

worker thread we eliminate internal lock contention completely. An example of this principle is provided in Figure 5 where up

to 8 multiple servers are started, each comprised of a single worker thread.

As the figure shows, in this configuration OpenOnload exhibits a steady rate of performance improvement with increasing

number of servers for up to 3 servers and is able to saturate the link with 4 CPUs. Similarly, the Kernel is able to maintain a

steady rate of performance improvement with increasing numbers of CPUs for up to 8 servers compared to the 2 server case (in

which the rate of performance improvement begins to decrease after 6 worker threads).

4.4 Optimize The Interrupt Service Configuration

4.4.1 Determine The Optimum Number of Interrupt Service CPUs

As explained in Section 2.3, performance can be limited by the number of CPUs servicing interrupts. However, dedicating

CPUs purely to servicing interrupts is expensive as the CPU is rendered unusable for other tasks. It is important, therefore, to

maximise performance without wasting CPUs.

Determining the optimum number of CPUs required to service interrupts can be a tricky task. In particular, it is important

to determine whether performance flatlines are due to application or network processing overheads. In general, we recommend

increasing the number of CPUs when application traffic is composed of short, frequent exchanges (“chatty” traffic) or when

interrupt coalescing is reduced (or disabled) to improve network latency. We also recommend runtime monitoring of interrupt

service CPUs (with mpstat, top or similar tools) to verify they are not saturated.

It is possible to empirically determine the minimum number of CPUs needed for interrupts for a particular hardware and

software configuration by monotonically increasing the number of CPUs servicing interrupts when a flatline in performance

is detected to the point where no significant difference in performance is noted with additional CPUs. Note however that we

advocate increasing the number of server instances(as indicated in Section 4.3) before increasing the number of CPUs to verify

the application is not the bottleneck.

An example of empirical determination on the example server is illustrated in Figure 6 and Figure 7 which shows Kernel and

OpenOnload Memcache performance as the number of CPUs servicing interrupts is increased. Using the server configuration

specified in Section 4.1 we notice Kernel networking performance (Figure 6) is interrupt limited with 1, 2 and 3 CPUs, flatlining

Issue 1 © Solarflare Communications 2013 9

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

1 CPUs Servicing Interrupts - Kernel
2 CPUs Servicing Interrupts - Kernel
3 CPUs Servicing Interrupts - Kernel
4 CPUs Servicing Interrupts - Kernel

Figure 6: Kernel Performance With Increasing Numbers of

Interrupt Service CPUs

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

1 CPUs Servicing Interrupts - OpenOnload
2 CPUs Servicing Interrupts - OpenOnload

Figure 7: OpenOnload Performance With Increasing Numbers

of Interrupt Service CPUs

100

300

500

700

900

 1 2 3 4

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15 Server on NUMA Node 0

Interrupts Serviced On NUMA Node 0 - Kernel
Interrupts Serviced On NUMA Node 1 - Kernel

Interrupts Serviced On NUMA Node 0 and 1 - Kernel

Figure 8: Performance As Interrupt Servicing Is Varied Across NUMA Nodes

at 3, 4 and 6 worker threads respectively. Using 4 CPUs however allows the system to scale in proportion to the active number

of worker threads. In contrast, OpenOnload performance (Figure 7) shows no performance increase as interrupt service CPUs

are increased. We can thus conclude that OpenOnload is not interrupt limited.

4.4.2 Localize Interrupt Service CPUs

In configurations where Memcache servers are restricted to a single NUMA node (e.g. it is common to multiplex Memcache

servers with I/O bound applications) we recommend localising interrupt servicing to cores on the same package as those hosting

Memcache worker threads in order to maximise performance.

Figure 8 illustrates the effect of this optimisation based on our example configuration. As the results show, for a single

server comprising of up to 4 worker threads running on NUMA Node 0, the best performance is achieved by co-locating two

interrupt service CPUs on Node 0. Spreading interrupt servicing on CPUs contained in Node 0 and 1 reduces performance

compared to the Node 0 case. Finally, only servicing interrupts on CPUs on a remote node leads to the worst performance. The

performance differential between configurations is proportional to the number of active worker threads – for 4 worker threads

the best configuration outperforms the worst by 31%.

4.4.3 Shield Interrupt Service CPUs

As outlined in Section 3.2 (Step 6), we recommend running interrupt service CPUs in a separate shield to prevent applications

being scheduled on them thereby leading to reduced performance resulting from a decrease in the amount of CPU available and

an increase in (data) cache pollution. While it may be intuitive to co-locate interrupts and the Memcache server where load is

very low (Unshielded Interrupt Servicing) or where latency is important, our experience has shown that, in practice, Unshielded

configurations usually lead to worse performance than Shielded configurations.

An experimental result comparing Shielded and Unshielded Interrupt configurations for the Kernel and OpenOnload net-

working stacks is provided in Figure 9 and Figure 10. In this comparison a single server, comprising of a single worker thread,

is started on NUMA Node 0. Furthermore, all interrupts are serviced on CPUs on Node 0. Clients are configured to carry out

Issue 1 © Solarflare Communications 2013 10

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Concurrent Client Connections

Memcache 1.4.15

Unshielded Interrupt Service CPUs - Kernel
Shielded Interrupt Service CPUs - Kernel

Figure 9: Kernel Performance With Shielded vs Unshielded

Interrupt Servicing

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Concurrent Client Connections

Memcache 1.4.15

Unshielded Interrupt Service CPUs - OpenOnload
Shielded Interrupt Service CPUs - OpenOnload

Figure 10: OpenOnload Performance With Shielded vs

Unshielded Interrupt Servicing

100

300

500

700

900

 1 2 3 4

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15 Server on NUMA Node 0

Mem Alloc On NUMA Node 0 - Kernel
Mem Alloc On NUMA Node 1 - Kernel

Mem Alloc On NUMA Node 0 - OpenOnload
Mem Alloc On NUMA Node 1 - OpenOnload

Figure 11: Performance With Local vs Remote Memory Allocation

ping-pong requests to the server, always maintaining a single outstanding request. We vary load from 1–16 clients, doubling

the amount of clients at every iteration.

For the Kernel stack (Figure 9), the results show that, at best, Unshielded interrupt servicing performs approximately

equally to the shielded case. As the number of clients (and, by extension, load) increases, the performance of the unshielded

case flatlines at approximately 70 MB/sec while the performance of the shielded case continues to increase until server CPU

saturation occurs at 138MB/sec. In contrast, due to the low reliance of OpenOnload on interrupts, performance is approximately

the same for both shielded and unshielded configurations (Figure 10).

4.5 Localize Memory Allocation

As explained in Section 2.2, accessing non-local (remote) memory on a NUMA node is slower than accessing local memory.

Figure 11 illustrates the performance impact of remote memory access on Memcache running on the Kernel and OpenOnload

network stacks. A single server is configured to allocate all cache memory on Node 0 or Node 1 respectively (achieved via

the numactl --membind command). The results show that, with the Kernel stack, the performance differential between

localised and remote allocation grows linearly with an increasing number of threads, from 7 MB/sec with 1 worker thread to

44 MB/sec with 4 worker threads.

In contrast, with OpenOnload, the performance differential for localised and remote allocation increases in proportion to

the number of active worker threads: 16 MB/sec for 1 thread, 21 MB/sec for 2 threads and 65 MB/sec for 3 threads. In this

scenario, adding an additional (4th) worker thread in the remote allocation configuration increases the amount of CPU available

to the server, allowing it to perform to the upper performance bound (659 MB/sec) imposed by server design (Section 4.1).

4.6 Client Side Optimizations

In this section we outline a number of client-side optimisations that can improve overall Memcache server performance.

Issue 1 © Solarflare Communications 2013 11

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

100

300

500

700

900

 1 2 4 8 16 32 64

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Multiget Requests Per Connection

Memcache 1.4.15

Multiget - Kernel
Multiget - OpenOnload

Figure 12: Performance With Increasing Multiget Requests Per

Connection

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Concurrent Client Connections

Memcache 1.4.15

TCP Connections - Kernel
UDP Connections - Kernel

TCP Connections - OpenOnload
UDP Connections - OpenOnload

Figure 13: Performance Of TCP vs UDP Get Requests

4.6.1 Multiget

Memcached supports multiget requests, a performance optimisation that operates on the principle that throughput can be in-

creased by amortising the network connection cost over several Memcache get requests. Clients connect to the server and

issue a get request for several keys to which the server responds in-order.

There are significant performance gains to be realised if client logic can be modified to support multiget requests. Figure 12

illustrates single threaded server performance as the client is configured to issue increasing numbers of multiget requests

per connection. There is a linear increase in performance with increasing numbers of multiget requests up until 16 multiget

requests per connection after which performance decreases. At peak, the 16-multiget configuration results in a 25% increase

over baseline (1 get per request) performance for the Kernel stack and a 43% increase for the OpenOnload stack.

4.6.2 UDP Get

Clients accessing light-to-moderately loaded servers can improve throughput by issuing UDP based get requests. Figure 13

illustrates the difference between TCP and UDP based retrieval performance on a single worker thread based server running

on NUMA Node 0. In this configuration, the client is configured to issue an increasing number of concurrent retrieval requests

over both TCP and UDP transport.

For the Kernel stack, UDP performance is always (if marginally) better than TCP performance with the biggest difference

in relative performance observed with 4 concurrent requests where UDP provides 30% higher throughput than TCP. Similarly,

with 4 concurrent requests OpenOnload provides 12% higher throughput over UDP compared to TCP. As client load increases

and performance is dominated by application processing overhead the advantage of UDP based transport decreases.

4.6.3 OpenOnload - Stack Per Thread

OpenOnload supports the EF STACK PER THREAD configuration option which, when set, instructs the stack to demarcate

internal networking data structures on a per-thread basis. We recommend this option is always set in multithreaded client

applications where threads create a large number of active sockets as the benefits gained by reducing data structure sharing

between threads can be substantial, especially at high load.

The quantitative benefits of per-thread stacks are clearly illustrated in Figure 14 which shows that, for a 2 server Memcache

1.4.15 configuration, disabling per-thread stacks limits client performance to approximately 50% of maximum link throughput.

4.7 Consider Hyperthreading

As outlined in Section 2.1, hyperthreading is a useful mechanism for increasing CPU utilisation by increasing parallelism in a

software-transparent manner. While the exact effects of enabling hyperthreading for a given workload are hard to quantify with-

out empirical experimentation, we recommend that readers concerned with maximising CPU utilisation evaluate hyperthreading

as a potential means for increasing hardware utilisation.

Figure 15 provides an example of the potential benefits of running a hyperthreaded configuration. In this experiment we

compare the 2 server configuration (One Per NUMA Node) described in Section 3.4 and Section 4.2 against one in which we

Issue 1 © Solarflare Communications 2013 12

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

OpenOnload - Stack Per Thread
OpenOnload - Stack Per Process

Figure 14: OpenOnload Performance Of Stack Per Thread vs.

Stack Per Process Configurations

100

300

500

700

900

 1 2 3 4 5 6 7 8

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B
/s

e
c
)

T
ra

n
s
a
c
ti
o
n
s
/S

e
c
 (

×
1
0

3
)

Number of Server Worker Threads

Memcache 1.4.15

2 Servers On 2 NUMA Nodes - Kernel
2 Servers On 1 Hyperthreaded NUMA Node - Kernel

2 Servers On 2 NUMA Nodes - OpenOnload
2 Servers On 1 Hyperthreaded NUMA Node - OpenOnload

Figure 15: Performance Of Non-Hyperthreaded vs

Hyperthreaded CPUs

enable hyperthreading (resulting in 12 logical processors per NUMA node). We configure the first 4 CPUs. on Node 0 to

service interrupts and run 2 servers (each of up to 4 threads) on the remaining 8 CPUs.

As the results show, with the Kernel stack hyperthreaded performance is marginally better than non-hyperthreaded perfor-

mance with low numbers of worker threads. This can be attributed to the fact that all interrupts are locally serviced on Node

0. As the number of threads increases hyperthreaded performance slightly trails non-hyperthreaded performance, resulting in

a maximum 4.8% reduction in performance for 8 threads spread over 2 servers. OpenOnload however shows approximately

equivalent performance in both configurations. With both stacks, running in hyperthreaded mode results in a 100% increase in

the amount of available (free) CPU on the system.

4.8 Further Exploration

For brevity, a number of recent software mechanisms designed to increase the efficiency of network processing have been

omitted. Readers interested in exploring further performance improvements are advised to research Receive Packet Steering [1],

Receive Flow Steering [2] and TCP Fastopen [3].

5 Conclusion

This document has outlined the general principles and specific steps that need to be carried out in order to optimise Memcache

server performance on Solarflare hardware in Linux environments and provided insight into the effects of tunable parameters

on throughput performance. Solarflare welcomes any clarifications, corrections or improvements to this technical report on

support@solarflare.com.

Issue 1 © Solarflare Communications 2013 13

mailto:support@solarflare.com

Filling The Pipe: A Guide To Optimising

Memcache Performance On Solarflare Hardware

A Hardware Specification & Software Versions

The results obtained in this technical report are based on the hardware specification and software versions detailed below:

A.1 Hardware Specification

Server and load generation client are identically specified:

Component Description Comments

System Dell PowerEdge C8220

CPU 2 × Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz For a total of 12 cores

RAM 8 × Hynix 4GB PC3-10600 DDR3-1333MHz ECC For a total of 32GB equally distributed be-

tween both CPUs.

NIC 1 × Solarflare Communications SFC9020 Solarstorm

SFN5322F-R1

One port used, directly connected to peer

via SFP+ Direct Attach.

Table 1: Test setup: Hardware Specification

A.2 Software Versions

Server and load generation client run identical software versions:

Software Package Version Comments

Linux distribution Red Hat Enterprise Linux Server release 6.2 (Santiago) 64 bit version

Kernel 3.2.43 Stock kernel, configuration derived from

configuration of installed Red Hat Kernel

OpenOnload 201210-u1 OpenOnload TCP/IP stack

Memcache 1.4.15 1.4.15 1.4 server branch representative

Memcache 1.6 Git commit id: 92b232d 1.6 server branch representative

Libevent 2.0.21 Event library against which Memcache is

linked

Memslap 1.0 Load generation client

Cpuset 1.5.5

Table 2: Test setup: Software Versions

References

[1] J. Corbet, “Receive packet steering.” http://lwn.net/Articles/362339/, November 2009. Retrieved 12th June

2013.

[2] J. Edge, “Receive flow steering.” http://lwn.net/Articles/382428/, April 2010. Retrieved 12th June 2013.

[3] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP fast open,” in Proceedings of the Seventh Conference

On Emerging Networking Experiments and Technologies, CoNEXT ’11, (New York, NY, USA), pp. 21:1–21:12, ACM,

2011.

Issue 1 © Solarflare Communications 2013 14

http://lwn.net/Articles/362339/
http://lwn.net/Articles/382428/

	Introduction
	A Primer on Modern x86 Architecture
	Packages, Cores, Dies and Hyperthreads
	Non-Uniform Memory Access
	Network Interrupt Management

	Optimising Memcache Performance: A Quickstart Guide
	Optimization Principles
	Optimising Memcache Server Performance
	Optimising Memcache Client Performance
	Benchmark Client-Server Performance

	Maximising Memcache Performance
	Use The Optimum Server Version
	Optimize Server-to-NUMA Node Mapping
	Consider Multiserver Configurations
	Optimize The Interrupt Service Configuration
	Determine The Optimum Number of Interrupt Service CPUs
	Localize Interrupt Service CPUs
	Shield Interrupt Service CPUs

	Localize Memory Allocation
	Client Side Optimizations
	Multiget
	UDP Get
	OpenOnload - Stack Per Thread

	Consider Hyperthreading
	Further Exploration

	Conclusion
	Hardware Specification & Software Versions
	Hardware Specification
	Software Versions

